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Abstract
Evolution of the polarization state of light transmitted through an optically
active medium follows from the Maxwell theory of electromagnetism. The
theory can be reduced to the study of a Schrödinger-like equation for two
levels representing the right- and left-circular polarizations, respectively. Using
quantum mechanical techniques, we show that the Stokes parameters should
exhibit tunneling in the anisotropic nonlinear medium—a phenomenon similar
to quantum tunneling—provided the nonlinear parameter be large enough. In
order to recover the quantum results in the classical framework, one has to
consider additional fluctuations of the initial parameters, since the classical
problem has no fundamental fluctuations. Indeed, even for small fluctuations,
the polarization state may exhibit chaotic tunneling across classically forbidden
regions. This is exemplified through polarization tunneling in a nonlinear
transparent medium submitted to constant Kerr effect and modulated nonlinear
parameter.

PACS numbers: 42.25.Ja, 42.65.Sf, 05.45.−a

1. Introduction

Polarization is one of the main characteristics of a transverse wave traveling through our
usual 3D space [1]. Particularly, the quantity is dramatically sensitive to the history of the
interactions that the wave experienced during travel [2].

An alternative and fruitful way to study the polarization of a plane electromagnetic wave
is to map the Maxwell equations onto a 2-states Schrödinger equation [3]. The space-evolution
of the polarization is then analogous to the problem of time-evolution of a 2-states quantum
system. For the latter, a number of results are yet known, as the problem corresponds to
important and active topics in the recent physics, such as Josephson effect for neutral atoms
[4], quantum dynamics of atomic Bose–Einstein condensate in a double-well potential [5],
dynamics of mesoscopic quantum spins [7], 4-momentum evolution of a negatively-charged
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massless relativistic particle in electromagnetic field [6], etc. As a result of the formal
equivalence, any result in one field can be translated into results in another context. This was
recently exemplified with the theoretical evidence for the existence of Rabi oscillations of the
circular polarization of light traveling through a dielectric medium embedded in a constant
magnetic field plus a helicoidal electric field [8, 9]. The problem is the optical analogue to the
nuclear magnetic resonance [10].

In this work, we investigate a novel phenomenon of light polarization tunneling, which is
realized as the tunneling of the Stokes vector through polarization states which are classically
forbidden. This is closely connected with chaotic behavior of the Stokes parameters when the
optical medium parameters are submitted to small fluctuations.

2. General quantum mechanical framework

Consider a monochromatic electromagnetic plane wave arriving onto a thick transparent slab
under normal incidence. We consider pure polarization states, such that the wave polarization
can be defined unambiguously as the combination of right- and left-hand circular polarization
components. The normal incidence defines the z-axis, while the x- and y-directions complete
the orthogonal frame. The slab is generally a nonlinear anisotropic dielectric medium, with
magnetic permeability µ = 1. The z-axis is considered as the principal axis of the dielectric
tensor ε̂, such that ε̂ is essentially a 2 × 2 tensor written here as

ε̂ =

εxx εxy 0

εyx εyy 0
0 0 εzz


 , (1)

and the transverse wave propagates inside the medium following the z-direction, with the
wavelength λ in vacuum.

2.1. The Schrödinger-like equation for the circular-polarized modes

Applying the para-axial approximation [11] to the general second-order Maxwell–Helmholtz
equation for the transverse electric field (Ex,Ey), one obtains a 2-states Schrödinger-like
equation, which writes simply when the circular polarization basis is used. Namely [12],

iλ
dψ

dz
= Ĥψ, (2)

with the 2-components complex vector ψ = (ψ+, ψ−) ≡ ((Ex + iEy)/
√

2, (Ex − iEy)/
√

2).
The quantity |ψ+|2 (resp. |ψ−|2) represents then the intensity of the right- (resp. left-) hand
circularly polarized component of the wave. The Hamiltonian Ĥ in (2) must be Hermitian,
since the norm of the vector ψ is conserved in a transparent medium, and traceless [3] because
the two eigenvalues of the operator Ĥ are opposite.

If the dielectric tensor (1) is the Hermitian matrix [13], the Hamiltonian Ĥ is given by the
2 × 2 matrix:

Ĥ =
(

c a − ib
a + ib −c

)
, (3)

with the three real components [8]:

a = π
εyy − εxx

εxx + εyy

, b = π
εxy + εyx

εxx + εyy

, c = iπ
εxy − εyx

εxx + εyy

.

Generally, the coefficients a, b, c depend on the polarization state ψ for the nonlinear media.
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Within this approach, we define the Stokes parameters (si)i=0,...,3 as the real numbers
given by

s0 = |ψ+|2 + |ψ−|2, (4)

s1 = ψ−ψ�
+ + ψ+ψ

�
−, (5)

s2 = i
(
ψ+ψ

�
− − ψ−ψ�

+

)
, (6)

s3 = |ψ+|2 − |ψ−|2. (7)

Since the medium is transparent, the value of s0 is conservative.

2.2. Functional integral approach for the Stokes parameters

We reformulate the evolution of optical polarization as a quantum problem [14]. Let us
introduce the normalized 2-components quantum state |ψ〉 ≡ |ψ1, ψ2〉. The quantity |ψ1|2
(resp. |ψ2|2) represents the occupation probability for the system to be in the state 1 (resp. 2).
We define then the Stokes parameters (si)i=0,...,3 as pseudo-spin variable with components

si = 〈ψ †|σi |ψ〉, (8)

where the σi are the Pauli matrices:

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Indeed, the parameters defined by (8) are identical to the definitions (4)–(7). Then, we write
the path integral expression [14] for the transition amplitude between states |ψ〉 and |ψ ′〉,
following the original idea of Feynman [15]:

〈ψ ′†|ψ〉 =
∫

eiI/h̄D(〈ψ ′†|, |ψ〉), (9)

where the action functional I, associated with the path, is given by

I =
∫

〈ψ †|
(

ih̄
∂

∂t
− Ĥ

)
|ψ〉 dt, (10)

with t the physical time and Ĥ = aσ1 + bσ2 + cσ3 the Hamiltonian operator corresponding
to (3). The Dirac action principle δI = 0 gives the usual Schrödinger equation:

ih̄
∂|ψ〉
∂t

= Ĥ|ψ〉,
formally identical to (2), where the Planck constant h̄ plays the role of the wavelength λ and
the time t the role of the spatial coordinate z.

Expressing now the state |ψ〉 within the spinor representation:

ψ1 = √
s0 cos(θ/2), ψ2 = √

s0 sin(θ/2) eiφ,

the Stokes parameters write

s1 = s0 sin θ cos φ, s2 = s0 sin θ sin φ, s3 = s0 cos θ, (11)

and the Lagrangian of the quantum field |ψ〉 is

L = ih̄〈ψ †| ∂

∂t
|ψ〉 − 〈ψ †|Ĥ|ψ〉

= −h̄s0φ̇ sin2(θ/2) − H, (12)

3



J. Phys. A: Math. Theor. 41 (2008) 035301 R Botet and H Kuratsuji

where the dot means the t-derivative, and the operator H = (a cos φ + b sin φ)s0 sin θ +
cs0 cos θ (note that the coefficients a, b, c may depend on θ and φ in the nonlinear case).
Furthermore, the first term in L, which is called the canonical term, and denoted by Lc, is
written in terms of the three-dimensional Stokes vector �s ≡ (s1, s2, s3) as

Lc = h̄

2

s2ṡ1 − s1ṡ2

s0 + s3
.

From the variational principle δI = 0, one can derive equations of motion for the Stokes
parameters, through the Lagrange equations:

∂L
∂θ

− d

dt

∂L
∂θ̇

= 0; ∂L
∂φ

− d

dt

∂L
∂φ̇

= 0.

There are essentially two ways to express the differential equations governing the evolution
of the Stokes parameters. If one writes the Hamiltonian of the system as H = H1(φ, s3), one
derives the Hamilton’s canonical equations (after replacing θ by s3 through (11))

h̄

2
φ̇ = ∂H1

∂s3
, (13)

h̄

2
ṡ3 = −∂H1

∂φ
, (14)

which show that the two variables φ and s3 are canonical for the problem [7].
The other way is to write the Hamiltonian of the system as H = H2(s1, s2, s3), yielding

the evolution of �s,
h̄

2

d�s
dt

= �B × �s, (15)

with the pseudo-magnetic field �B = (∂H2/∂s1, ∂H2/∂s2, ∂H2/∂s3).

3. Tunneling of the Stokes parameters in the functional integral approach

Therefore, tunneling of the quantum state representing the circular polarization of the light
in the optically active medium appears to be a standard problem within the framework of the
functional integral approach. Let us consider the t-evolution of the state |ψ〉. According to
the initial condition, the state of the system can be in different domains. Suppose that the
phase-space is composed of two disconnected domains, say region 1 and region 2, separated
by a (classically-)forbidden region. From (9), one can write generally the transition amplitude
from the region 1 to the region 2 as

K1→2 = ei/h̄
∫ 2

1 Ldt ,

in which the classical action has been replaced by the integral of the Lagrangian L of the
system. The probability of tunneling between these two disconnected regions is given as

P
qu

1→2 = |K1→2|2,
which can be smaller than 1 whenever the Lagrangian L takes imaginary values.

Translated into the initial electromagnetic problem, we have to change h̄ into λ, and t into
z, in order to recover the physical parameters. It results in the formula

P
qu

1→2 = ∣∣ei/λ
∫ 2

1 Ldz
∣∣2

(16)

for the tunneling probability between the regions 1 and 2, where, according to formula (12),

L = −s0(λφ′ sin2(θ/2) + (a cos φ + b sin φ) sin θ + c cos θ),
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and the ′ denotes the z-derivative. Furthermore, expression (16) can be written in terms of the
canonical term Lc as far as the orbit on the energy surface H = E is concerned, namely,

P
qu

1→2 = ∣∣ei/λ
∫ 2

1 Lc dz
∣∣2

.

To fix the ideas, let us take the values (a, b, c) = (a, 0, gs3), as a general set of values for
(a, b, c) for optical medium with Kerr effect (a) and nonlinear effect (g �= 0) [8]. Dynamics
of the Stokes components in the linear case g = 0 was treated in details in [2]. The medium
is supposed to be homogeneous, that is the coefficients a and g are independent of the
z-coordinate. We will discuss here the case where the initial state of the wave is partially
circular-polarized, that is (si)i=0,...,3|z=0 = (s0, s10, 0, s30), with s2

10 + s2
30 = s2

0 . Because
of (4), intensity s0 > 0. Then, H2 = as1 +gs2

3 , and the equations of motion (15) for the Stokes
vector �s write

λ

2

d�s
dz

=

 −2gs2s3

−as3 + 2gs1s3

as2


 , (17)

with the conservative norm ||�s||2 = s2
0 .

The system being homogeneous, one can eliminate s2 from the above equations, and
express the component s1 as a simple function of s3:

s1 − s10 = g

a

(
s2

30 − s2
3

)
, (18)

which reflects conservation of the Hamiltonian. Moreover, all the quantities of interest can be
written as a function of s3 only, for example,

−λ2

4
s ′2

3 = F(s3) ≡ g2
(
s2

30 − s2
3

)(
κ2 − s2

3

)
,

L12(s3) = g

(
s10(a/g − s10)

s3

s0 + s3
+ s2

3 − s0s3

)
,

(19)

with the coefficient κ2 depending on the initial conditions, as κ2 = s2
0 − (a/g − s10)

2 � s2
0 ,

and where L12 is the value of the Lagrangian along the trajectory in the �s-space. The value of
κ2 may be either positive or negative according to the values of the ratio a/g and to the initial
conditions.

Changing from (19) z for s3 into the integral (16), one obtains the tunneling probability
as

P
qu

1→2 = exp

(∫ 2

1

L12(s3)√
F(s3)

ds3

)
. (20)

In formula (20), the integration range is over the values of s3 for which the function F takes
positive values. Indeed, there is no contribution of the negative values of F(s3) to P

qu

1→2,
because of the modulus in definition (16). This ‘classically’ forbidden region depends on the
initial state of the wave through the parameter s30 in equation (19). It is worth noting that (20)
does not depend on the wavelength λ. So, we can expect the result to be valid independently
of any approximation related to the proper value of λ.

3.1. Example

Let us consider the particular case where a > 0 (positive Kerr effect), and g > 0. The
latter condition can be considered without loss of generality because the equations (17) are
invariant by the replacement (s1, s2, s3) ←→ (−s1, s2, s3), except for the sign of g. The
function F(s3), as defined in (19) may take positive values for particular values of the ratio
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(a) (b)

Figure 1. Poincaré sections for s0 = 1 and (a) (a, gs0) = (1, 1/2); (b) (a, gs0) = (1, 3/2).
Sixty-four regularly spaced initial conditions are used, and 3000 points are plotted for each
trajectory. One sees in (a) the limit of stability of the fixed point {φ = 0, s3 = 0}. In (b),
for which gs0 > a/2, the localization of the system state around the two stable fixed points
{φ = 0, s3 = ±2

√
2/3} is exemplified through the trajectories (bold lines) of {φ, s3} when the

initial conditions s10 = 0, s30 = +1 are used (the corresponding equation is a cos φ = g

√
s2

0 − s2
3 ).

a/g, namely, 0 < a/g < s0 + s10. Moreover, the tunneling probability (20) can be readily
expressed as the sum of complete elliptic integrals. For example, whenever κ2 > 0, one has
1
2 ln P

qu

1→2 = −s30
[
K

(
κ2

/
s2

30

) − E
(
κ2

/
s2

30

)]
+ s10(a/g − s10)

[
K

(
κ2

/
s2

30

) − �
(
κ2

/
s2

0 |κ2
/
s2

30

)]
, (21)

with the usual notations for the complete elliptic integrals K,E,� [17]. Note that the proper
value of P

qu

1→2 depends explicitly on the initial conditions s10 and s30, as well as on the
intensity s0.

For instance, for s0 = 1, s10 = 0 and g/a = 3/2, the region −√
5/3 < s3 <

√
5/3 is

classically forbidden as it would lead from (19) to negative values of s ′
3

2 (see also figure 1).
Nevertheless, formula (21) gives a positive transition probability P

qu

1→2 
 0.07 for tunneling
from the region s3 
 1 to the region s3 
 −1. The proper physical meaning for such an event
in the classical case will be clarified in the following section.

4. General classical chaotic framework

As previously, we consider the case of an active medium with positive Kerr and nonlinear
effects, that is the Hamiltonian H1(φ, s3) = a

√
s2

0 − s2
3 cos φ + gs2

3 .
From (13) and (14), the angles θ and φ verify the coupled differential equations:

λ

2
θ ′ = −a sin φ, (22)

λ

2
φ′ = −a cot θ cos φ + 2gs0 cos θ, (23)

and 0 < θ < π, 0 � φ � 2π . When sin θ = 0, equation (23) is replaced by λφ′/2 = gs0.
Relations (22) and (23) can be regarded here as evolution equations for the couple

of classical angular variables (θ, φ). In particular, all information about natural quantum
fluctuations of the variables is wiped out. From this point of view, the discussion below—about
the structure of the solutions of (22) and (23)—should be understood within the framework of
classical physics, and possible fluctuations studied as an independent feature.
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4.1. The fixed points

Four couples {φ, s3} can be the fixed points of the equations above.

• The point {φ = π, s3 = 0} is a stable fixed point for any value of the parameters a and g.
• The point {φ = 0, s3 = 0} is another fixed point. Linearization of (22) and (23) around

this point gives

ε̈ +
4a

λ2
(a − 2gs0)ε = 0.

This fixed point is then stable when gs0 < a/2 and unstable otherwise.

• By similar argument, one can show that the two points
{
φ = 0, s3 = ±

√
s2

0 − a2/4g2
}

exist and are stable whenever gs0 > a/2.

Bifurcation of the solution in gs0 = a/2 is analogous to the critical behavior of the
Lipkin spin model, namely, an ensemble of spins interacting identically one with each other
[16]. Indeed, if one considers the action (10) with the Hamiltonian H2 = as1 + gs2

3 , one can
re-interpret s3 as the component of the sum of many spins over the third coordinate, while s1 is
the projection of this sum over the first coordinate (and a is then the magnetic field along the
first coordinate). Within this framework, s0 corresponds to the number of interacting spins.
The partition function of such a model is

Z =
∫

exp(−βH)DS. (24)

When s0 is large, the value of Z in (24) is given by the stationary phase condition, which is
nothing but the equations of motion (23). The most probable configuration of the spin system
is then s3 = 0 when gs0 < a/2, while it is s3 = ±

√
s2

0 − a2/4g2 when gs0 � a/2.
Note that the partition function above is obtained as the short wavelength limit λ → 0

of the imaginary-time version of the functional integral used in (9), with the action functional
I = − ∫

(λs0φ
′ sin2(θ/2) + H) dz. If we write H = s0H̃ and consider large value for s0, then

the stationary phase condition leads to δH̃ = 0, which corresponds to a critical bifurcation
between the two types of solutions.

4.2. Poincaré sections

All the fixed points can be visualized throughout the Poincaré sections for the canonical
variables {φ, s3} whose evolution is governed by the system of equations (22) and (23). We
use the stroboscopic method with the frequency 2a/λ, corresponding to the natural frequency
of the linear (i.e. g = 0-) case.

The Runge–Kutta RK4 method is used with the increment of time small enough to lead to
similar plots when the increment dz is multiplied or divided by a factor 5. Quantitative
comparisons with known exact trajectories were also done (e.g., figure 1). Actually,
2a dz/λ = 10−3 is chosen. In figures 1(a) and (b), one sees how the Poincaré sections
change when the nonlinearity parameter g increases in magnitude.

4.3. Localization

The relation (18) leads directly to the localization of the vector �s, as can be written in terms of
the couple of variables {φ, s3}:

a

√
s2

0 − s2
3 cos φ + gs2

3 = A, (25)

7
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with the constant A= as10 + gs2
30. Let us consider a trajectory starting from {φ = 0, s3 = s30}.

This trajectory will cross the s3 = 0 line iff |A/a| � s0. This means that if a/g < s0 + s10,
there is no trajectory which goes from the region s3 > 0 to the region s3 < 0 (and conversely).
Therefore, there is localization in the sense that the region 1, around the fixed point

{
φ =

0, s3 = +
√

s2
0 − a2/4g2

}
, and region 2, around the fixed point

{
φ = 0, s3 = −

√
s2

0 − a2/4g2
}
,

are no more connected by any continuous trajectory. They are also disconnected from the
region 0 around the central fixed point {φ = π, s3 = 0}.

Actually, when gs0 > a/2, a separatrix appears to divide the Poincaré section into the
three regions defined above. The equation of the separatrix is given by (25) with A = g (i.e.
a cos φ = g

√
s2

0 − s2
3 ). The upper and lower points of the separatrix are {φ = π, s3 = ±κ} as

deduced from (19). The separatrix is clear in figure 1(b).

5. Tunneling of the Stokes parameters in the classical chaotic approach

Strictly speaking, tunneling cannot occur in the classical problem, as the evolution equations
are deterministic, while quantum tunneling is allowed because of the fundamental fluctuations
of the quantum variables. So, we will consider additional fluctuations of the physical
parameters in the polarization problem. This is a drastic change for the classical system.

Indeed, without fluctuation of the parameters, the classical system is autonomous with two
degrees of freedom, and, consequently, cannot exhibit any form of chaotic behavior according
to the Poincaré–Benxidon theorem [18]. With fluctuations, it may become chaotic for some
range of parameters, as we shall see below.

Several choices are possible (fluctuations of a, b, g, γ or any combination) and lead
essentially to similar qualitative conclusions. We will focus below on a simple case, namely,
when the Kerr parameter a > 0 is fixed (while b = γ = 0), and g, the nonlinear parameter, is
modulated according to

g(z) = go + g̃ sin kz,

with g̃ a small coefficient and k the spatial frequency. Then, we have replaced the condition
g = go, by 〈g〉 = go, allowing for periodic modulation for this parameter. We will consider
any positive value of k such that more complex (or even random) fluctuations of g could be
obtained by the Fourier transform.

Note that the Hamiltonian is no more conservative as dH2/dz = g̃ks2
3 cos kz (though, in

average, 〈dH2/dz〉 ≡ limZ→∞ 1/Z
∫ Z

0 dH2(z) = 0).

5.1. Example of chaotic tunneling

Let us consider the system in the initial state {φ, s30 = s0}, with any value of φ. For the g̃

values small enough, the trajectory in the Poincaré section is a closed localized orbit, and the
s3 < 0-region is then unreachable.

When now g̃ is large enough, that is g̃s0 � 0.35 for gos0 = 3/2 and k = 1, the system
state can cross over the forbidden classical region (i.e., the forbidden region common to all the
parameters g such that go − g̃ � g � go + g̃), by chaotic behavior (see figure 2(b)) in order to
reach the s3 < 0-region. One can define a probability of transition as P cl

1→2 = 1/ωt−, where
t− is the lifetime in the s3 > 0-region (that is the time needed for the system state to reach the
s3 < 0-region for the first time). Indeed, if the system stays indefinitely in the s3 > 0-region,
the probability P cl

1→2 = 0, while the probability equals 1 if it jumps to the s3 < 0-region after
one orbit.

8
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(a) (b)

Figure 2. Poincaré sections for s0 = 1 and (a) (a, gs0) = (1, gos0), with gos0 in between 1.1 and
1.9, by steps of 0.05 (continuous lines); (b) (a, gs0) = (1, 3/2 + 0.4 sin z). Same parameters as in
figure 1. Initial conditions: 1000 starting points {φ, s3 = 1}, random φ between 0 and π . Regular
localization is clear in part (a) for the fixed value of gos0. This will be the same when the value of
g̃ is small enough for the system to be stable with respect to the small modulations of the nonlinear
parameter g. In part (b), the value of g̃ is above the chaos threshold for k = 1, and the system-state
crosses over the forbidden region to reach the negative values of s3.

On the example of figure 2, that is g̃s0 = 0.4, one obtains P cl
1→2 ∼ 6 × 10−4. The limit

case of interest is g̃s0 = 0.5 as it corresponds to the situation where one of the possible orbits
go − g̃ � g � go + g̃ is marginally in the domain s3 > 0 (namely, gs0 = 1). For this limit case,
the probability of classical transition appears to be P cl

1→2 = 4 × 10−2, of the same order of
magnitude as the probability of quantum transition found in section 3.1. More generally (on
the basis of other sets of parameters), one finds similar agreement between the values of P

qu

1→2
and P cl

1→2 if one considers that the natural quantum fluctuations of the polarization correspond
to the limit case of the classical fluctuations with localization.

6. Conclusion

We have investigated the optical gyration of the Stokes vector representing the polarization
state of light propagating in a medium with constant Kerr effect and modulated nonlinearity.
In particular, we focused on the possible tunneling process of the polarization state. When
the average nonlinear parameter is large enough, even small fluctuations may induce chaotic
behavior in the space evolution of the Stokes parameters. This results in dynamical chaotic
tunneling across the polarization-state domains which are classically forbidden. Actually,
cross-over appears between two localized orbits, because of the resonance occurring between
the nonlinear and forced oscillations.

On the other hand, we have considered polarization tunneling by adopting a purely
quantum mechanical idea. Here, tunneling is directly described as mutual change between
two localized orbits on the Poincaré sphere, separated by a (classically) forbidden region. We
obtain a concise analytic form of the tunneling probability by applying the functional integral
approach in the Stokes parameters space.

Actually, nonlinearities are one of the most important issues of modern optics, as they
deal with light controlled by light. The results presented here show how the stability of light
polarization is very much concerned with the magnitude of the nonlinear parameters of the
optical medium.
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